Department of Chemistry

Lesson Plan

Name of the Teacher: Dr. ANUP KUMARI

Class: M.Sc Previous (1st Semester)

Subject: 1. Physical chemistry

Month	Physical chemistry	
August	Partial Molar Properties: Recapitulation of thermoagnance in the properties chemical potential for an	Revision Test
September	Chemical Kinetics: Collision theory of reaction rates, the steric requirement, Arrhenius equation and Conventional Transition State Theory (CTST), Equilibrium hypothesis, Comparison of Collision theory and CTST, Potential energy surfaces (Only basic Idea), Thermodynamic formulation of activated complex theory, Chain reactions (hydrogen halogen reaction), Unimolecular reactions: Lindemann - Christiansen	Revision Test
October	Quantum Mechanics-I The postulates of quantum mechanics, Linear and Hermitian operators Commutation of operators and Uncertainty Principle. Eigen functions Eigenvalues. Schrödinger equation, free particle, Schrödinger equation particle in a box, the	Revisio Test

	degeneracy, Schrödinger equation for linear harmonic oscillator and its solution, zero point energy.	
ember	Electrochemistry: Debye-Hückel theory of ion-ion interaction and activity coefficient, applicability and limitations of	
,III.O.	Debye-Hückel limiting law, its modification for finite-sized ions, effect of ion-solvent interaction on activity	Revision
	coefficient. Physical significance of activity coefficients, mean activity coefficient of an electrolyte. Debye-	Test
	Huckel Onsager (D-H-O) theory of electrolytic conductance, Debye Falkenhagen effect, Wein effect. D-H-O equation	
	- its applicability and limitations, Pairwise association of ions (Bjerrum treatment), Modification of D-H-O theory to	
	account for ion-pair formation.	
Γext Books	Recommended Books/e-resources/LMS:	
	1. An Introduction to Chemical Thermodynamics, R.P. Rastogi and R.R. Misra, Vikas	
	Pub.	
	2. Physical Chemistry, P.W. Atkins, Oxford University Press.	
	3. Thermodynamics for Chemists, S. Glasstone, Affiliated East-West Press.	
	4. Thermodynamics, I.M. Klotz and R.M. Rosenbers, Benzamin.	
	5. Chemical Kinetics, K.J. Laidler, McGraw Hill.	

- 6. Kinetics and Mechanism, A. A. Frost and R.G. Pearson, John Wiley and Sons.
- 7. Electrochemistry, S. Glasstone, Affiliated East-West Press.
- 8. Physical Chemistry, G.W. Castellan, Narosa.
- 9. Heterogeneous Catalysis: Fundamentals and Applications, Julian R.H. Ross, Wiley

VCH; 2nd, Revised and Enlarged Edition edition (October 1, 2007).

10. Concepts of Modern Catalysis and Kinetics, I. Chorkendorff and J. W.

Niemantsverdriet.

11. Physical Chemistry, by Robert J. Silbey, Robert A. Alberty, Moungi G. Bawendi,

Wiley India; Fourth edition (1 January 2015)

12. Introduction to Quantum Chemistry, A.K. Chandra, Tata McGraw Hill.

Department of Chemistry

Lesson Plan

Name of the Teacher: Dr. ANUP KUMARI

Subject: 1. Organic chemistry

2. Inorganic chemistry 3. 3. Physical chemistry Class: B. Sc. 5th semester

Month	Organic chemistry	Inorganic chemistry	Physical chemistry
August	NMR Spectroscopy-I Principle of nuclear magnetic resonance, the PMR spectrum,number of signals, peak areas, equivalent and nonequivalent protons positions of signals and chemical shift,shielding and deshielding of protons, proton counting,splitting of signals and coupling constants, magnetic equivalence of protons. NMR Spectroscopy-II Discuss ion of PMR spectra of the molecules: ethyl bromide, npropyl bromide, isopropyl bromide, 1,1-dibromoethane, 1,1,2-tribromoethane, ethanol, acetaldehyde, ethyl acetate, toluene, benzaldehyde and acetophenoneSimple problems on PMR spectroscopy for structure determination of organic compounds.	Metal-ligand Bonding in Transition Metal Complexes Limitations of valence bond theory, an elementary idea of cr ystal-f ield theory, crystal field split ting in octahedral, tetrahedral and square planar complexes, factors affecting the crystal-f ield parameters. Thermodynamic and Kinetic Aspects of Metal Complexe A brief outline of thermodynamic stability of metal complexes and factors affecting the s tab ility, substitution reactions of square planar complexes of Pt(II).	Quantum Mechanic s-I Black-body radiation, Plank's radiation law, photoele effect, heat capacity of solids, Compton effect, wave func and its significance of Postulates of quantum mechan quantum mechanical operator, commutation relati Hamiltonial operator, Hermitian operator, average valu square of Hermitian as apositive quantity, Role of opera in quantum mechanics, To show quantum mechanically position and momentum cannot be predic simultaneously, Determination of wave function & energ a partic le in one dimensional box, Pictorial representa and its significance. Physical Properties and Molecular Structure Optica l activity, polarization – (clausius – Mossotti equation). Orientation of dipoles in an electric field, dipol moment, included dipole moment, measurement of dipole moment-temperature method and refractivity method, dip moment and structure of molecules, Magnetic permeabilit magnetic susceptibility and its determination. Applica tio magnetic susceptibility, magnetic properties – paramagnetism, diamagnetism and ferromagnetics.
	Manage 1 11	Magnetic Properties of Transition Metal Complexe Types of magnetic behaviour, methods of determining magnetic susceptibility, spin-only formula. L-S coupling, correlation of s and eff values, orbitalcontribution to magnetic moments, application of magnetic moment data	spectrum, basic features of spectroscopy, statement