Govt.P.G. College Mahendergarh Haryana

Lesson Plan

Subject: Mathematics.
Semester: VI B.sc (N.M) Real and Complex Analysis
Subject code: 12BSM361

Section Name	Topics		
Section A:	Jacobians, Beta and Gama functions.		
Section A: Cont.	Double and Triple integrals, Dirichlets integrals.		
Section A: Cont.	Change of order of integration in double integrals.		
Section B:	Fourier's series: Fourier expansion of piecewise monotonic functions.		
Section B: Cont.	Properties of Fourier Coefficients, Dirichlet's conditions, Parseval's identity for Fourier series.		
Section B: Cont.	Fourier series for even and odd functions, Half range series, Change of Intervals.		
Section C	Extended Complex Plane, Stereographic projection of complex numbers.		
Section C: Cont.	Continuity and differentiability of complex functions, Analytic functions.		
Section C : Cont.	Cauchy-Riemann equations. Harmonic functions.		
Section D	Mappings by elementary functions: Translation, rotation.		
Section D: Cont	Magnification and Inversion. Conformal Mappings, Mobius transformations. Fixed pints.		
Section D: Cont	Cross ratio, Inverse Points and critical mappings.		

1	
i l	

Books Recommended:

- 1. T.M. Apostol: Mathematical Analysis, Narosa Publishing House, New Delhi, 1985
- 2. R.R. Goldberg: Real analysis, Oxford & IBH publishing Co., New Delhi, 1970
- 3. D. Somasundaram and B. Choudhary: A First Course in Mathematical, Analysis, Narosa Publishing House, New Delhi, 1997
- 4. Shanti Narayan: A Course of Mathematical Analysis, S. Chand & Co., New Delhi
- 5. R.V. Churchill & J.W. Brown: Complex Variables and Applications, 5th Edition, McGraw-Hill, New York, 1990
- 6. Shanti Narayan: Theory of Functions of a Complex Variable, S. Chand & Co., New Delhi.

Followed by
Dr. Sandeep Kumari
Assistant Prof.
Deptt. Of Mathematics
Govt P.G. College M/garh.

Govt.P.G. College Mahendergarh <u>Haryana</u>

Lesson Plan

Subject: Mathematics.

B.sc (N.M) Sequences and Series Subject code: 12BSM241 **Semester: IV**

Week	Section Name	Topics		
1	Section A:	Boundedness of the set of real numbers; least upper bound, greatest lower bound of a set, Neighborhoods.		
2	Section A: Cont.	Interior points, isolated points, limit points, open sets, closed set, interior of a set, closure of a set in real numbers and their properties.		
3	Section A: Cont.	Bolzano-Weiestrass theorem, Open covers, Compact sets and Heine-Borel Theorem.		
4	Section B:	Sequence: Real Sequences and their convergence, Theorem on limits of sequence, Bounded and monotonic sequences.		
5	Section B: Cont.	Cauchy's sequence, Cauchy general principle of convergence, Subsequences, Subsequential limits. Infinite series: Convergence and divergence of Infinite Series.		
6	Section B: Cont.	Comparison Tests of positive terms Infinite series, Cauchy's general principle of Convergence of series, Convergence and divergence of geometric series, Hyper Harmonic series or p-series.		
7	Section C	Infinite series: D-Alembert's ratio test, Raabe's test, Logarithmic test.		
8	Section C: Cont.	De Morgan and Bertrand's test, Cauchy's Nth root test, Gauss Test.		
9	Section C : Cont.	Cauchy's integral test, Cauchy's condensation test.		

10	Section D	Alternating series, Leibnitz's test, absolute and conditional convergence, Arbitrary series: Abel's lemma, Abel's test, Dirichlet's test, Insertion and removal of parenthesis.
11	Section D: Cont	Re-arrangement of terms in a series, Dirichlet's theorem, Riemann's Re- arrangement theorem.
12	Section D: Cont	Pringsheim's theorem (statement only), Multiplication of series, Cauchy product of series, (definitions and examples only) Convergence and absolute convergence of infinite products.

Books Recommended:

- 1. R.R. Goldberg: Real Analysis, Oxford & I.B.H. Publishing Co., New Delhi, 1970
- 2. S.C. Malik: Mathematical Analysis, Wiley Eastern Ltd., Allahabad.
- 3. Shanti Narayan: A Course in Mathematical Analysis, S.Chand and company, New Delhi
- 4. Murray, R. Spiegel: Theory and Problems of Advanced Calculus, Schaum Publishing co., New York
- 5. T.M. Apostol: Mathematical Analysis, Narosa Publishing House, New Delhi, 1985
- 6. Earl D. Rainville, Infinite Series, The Macmillan Co., New York

Followed by
Dr. Sandeep Kumari
Assistant Prof.
Deptt. Of Mathematics
Govt P.G. College M/garh.

Govt. P.G. college Mohindergarh Lesson Plan: 2nd Semester 2024-2025 B.A/B.Sc – Algebra and Number Theory

weekly	Topics			
Week 1	 Symmetric, Skew symmetric, Hermitian and skew Hermitian matrices. Elementary Operations on matrices. Rank of a matrices. Inverse of a matrix. Linear dependence and independence of rows and columns of matrices 			
Week 2	 Row rank and column rank of a matrix. Eigenvalues, eigenvectors and the characteristic equation of a matrix. Minimal polynomial of a matrix. Cayley Hamilton theorem and its use in finding the inverse of a matrix. 			
Week 3	 Applications of matrices to a system of linear (both homogeneous and non-homogeneous) equations. Theorems on consistency of a system of linear equations. Unitary and Orthogonal Matrices Bilinear and Quadratic forms. 			
Week 4	 Relations between the roots and coefficients of general polynomial equation in one variable. Solutions of polynomial equations having conditions on roots. Common roots and multiple roots. Transformation of equations. 			
Week 5	 Nature of the roots of an equation Descarte's rule of signs. Solutions of cubic equations (Cardon's method). Biquadratic equations and their solutions 			
Week 6	Divisibility, G.C.D.(greatest common divisors), L.C.M.(least common multiple),Primes			
Weekk 7	Fundamental Theorem of Arithmetic. Linear Congruences, Fermat's theorem.			

Followed by
Dr. Sandeep Kumari
Assistant Prof.
Deptt. Of Mathematics
Govt P.G. College M/garh.